If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63x^2-3x-8=0
a = 63; b = -3; c = -8;
Δ = b2-4ac
Δ = -32-4·63·(-8)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-45}{2*63}=\frac{-42}{126} =-1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+45}{2*63}=\frac{48}{126} =8/21 $
| 6x+x2=0 | | -207=5(3+8b)-3b | | 9.1/x-57=1.4 | | 146=3n+4(-6n+5) | | 24/60=(x+5)/(4x-1) | | 96=2(7-5x)+2 | | 7(1+4k)=-217 | | p^2–8p=35 | | p2–8p=35 | | x=2x-4/5x-1 | | t^2-10t-200=0 | | 2x+3+x+4=2 | | 7/2x-3=2/3x+5 | | 5^x=25^x+2 | | 4(x+7)–5x=6–2x | | 9x^2+21x^2=34^2 | | 4(-5v-7)=-188 | | 2x+3÷x+4=2 | | x=12/13 | | (x*x)+(x*9/21)^2=34^2 | | -2x-14+5=-6x-14-1 | | 9^(x)=3^(x)+6 | | 4x+10+4=6x+10-10 | | 3x+1+7=6x+1+6 | | 2-3t^2=0 | | 2x2-x-3=-x+5 | | (x+5)(x-4)=30 | | x2-3=-x+3 | | -2(1+7a)-2a=-130 | | x-0=2x-3 | | Z^2-3z+7=0 | | 4(w-1)=7w+20 |